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Abstract

Traditional Bag-of-visual Words (BoWs) model is commonly generated

with many relatively independent steps including and thus is hard to be

jointly optimized. Moreover, the dependency on hand-crafted local feature

makes it not effective in conveying high-level semantics. These issues

largely hinder the performance of BoWs model in large-scale image

applications. To conquer these issues, we propose an End-to-End BoWs

(E2BoWs) model based on Deep Convolutional Neural Network (DCNN).

Our model takes an image as input, then identifies and separates the

semantic objects in it to generate semantic feature maps, and finally outputs

the visual words with high semantic discriminative power for each feature

map. We also introduce a novel learning algorithm to train the model, which

further ensures the accuracy and efficiency of the retrieval system.

Experimental results on several public datasets show that our method

achieves promising accuracy and efficiency compared with recent deep

learning based retrieval works.

Contributions

The major contributions of this work:

1. Out E2BoWs model is generated in an end-to-end manner, thus is more

efficient and easier to be jointly optimized and tuned.

2. We incorporating DCNN into BoWs model, which is potential to bring

higher discriminative power to semantics.

3. Visual words generated by proposed E2BoWs conveys clear semantic

cues compared with DCNN based hash models.  Performance on CIFAR-10 and CIFAR-100 (mAP)

 Performance on MIRFLICKR-25K (NDCG@100)

 Evaluation on generalization ability on NUS-WIDE (mAP)

 Retrieval efficiency on different datasets

Experiments

Model training

 We expect the proposed model and generated visual words should have

follows properties:

1. Training procedure converges fast.

2. Visual words preserve the similarity relationship among images for

accuracy.

3. Visual words are sparse for efficiency.

Thus we design the overall objective function as follows:

, , denote the loss of classification, triplet similarity and sparsity,

respectively.

Triplet similarity loss:

Sparsity loss:

 Generalization ability improvement:

We change the threshold parameter in triplet similarity loss w.r.t each pair

of images based on similarity among categories as follows:
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Given an input image , a vector of visual words is generated directly by

proposed model: , where is the mapping function of proposed

model and is parameters in E2BoWs model.

Specifically, we generate visual words of input images in following two

steps:

1. Semantic feature map generation

We transform parameters in FC layer

with n-way output into a convolutional

layer. So that n semantic feature maps

are generated for each input image

corresponding to n training category.

2. Visual words generation

m visual words are generated from each semantic feature map,

resulting in m×n visual words.

3. Thresholding

Visual words with small response values are discarded to further ensure

retrieval efficiency. The procedure is formulated as follows with

parameter to be learned:

Proposed Model
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