

SCAN: Spatial and Channel Attention Network for Vehicle Re-Identification Shangzhi Teng¹, Xiaobin Liu², Shiliang Zhang², Qingming Huang¹

Motivation

- 1. Compared with global appearance, some local regions could be more discriminative.
- 2. It is difficult to align every local part between two vehicle images of different viewpoints.
- 3. To automatically discover discriminative regions on vehicles and discriminative channels in networks, we propose a Spatial and Channel Attention Network (SCAN) based on DCNN.

> Spatial Attention Branch

The structure of SAB is illustrated in (a). channel-wise global average pooling, a convolutional layer of 3×3 filter with stride 2, an up sampling layer and a scaling conv layer (1 parameter). Channel Attention Branch

The structure of CAB is illustrated in (b). Motivated by SENet. > Vehicle ReID by SCAN

We add our SCAN after the conv5 layer in VGG_CNN_M 1024 and the conv5_3 layer in VGG16. we use the 512-D fully connected layer as the vehicle feature. We calculate L2 distance between query images and each gallery image using this 512-D deep feature.

University of Chinese Academy of Sciences, Beijing, CN² Peking University, Beijing, CN

Experiments

> Datasets

Dataset		Train ID/image		Probe ID		/image	galler	y ID/image
VeRi-776		576/37	778	200/167		578	200	0/11579
VehicleID 13164/		13164/10	00182		2400/17	7638	240	00/2400
>Re	esults on VeF	Ri-776 and	l Vehicl	eI	D			
	VeRi-	776	Top-1(%	6)	Top-5(%) r	nAP(%)	
	KEPLER [16]		48.2		64.3		33.53	
	FACT [14]		50.95		73.48	3	18.49	
	FACT+Plate+STR [14]		61.44		78.78	3	27.77	
	OIFE	[23]	68.3		89.7		51.42	
	VAMI [32]		77.03		90.82	2	50.13	
	light vgg m		76.02		86.05	5	38.94	
	light vgg m+SCAN		82.24		90.76	5	49.87	
	light vgg16		76.82		86.71	l	39.91	
	light vgg16+SCAN		79.92		88.32	2	50.15	
	Vehi	Top-2		1(%)	Top	-5(%)		
	VGG + Trip	31.9		9 5		50.3		
	VGG + 0	32.9		.9	53.3			
	Mixed Diff	38.2		61.6				
	OIFE [23]			67.0		82.9		
	VAMI [32]			47.34		70.29		
	light	44.14		65.21				
	light vgg m+SCAN			55.73		71.73		
	light vgg16			60.63		72.67		
	light vgg2	16+SCAN		63.52			7.53	
	light vgg16+SCAN*			65.44			8.47	

Dataset	Train ID/image		F	Probe ID/	/image	gallery ID/ima	
VeRi-776	576/37	778		200/10	578	200/11579	
VehicleID 13164/10		00182		2400/17	7638	240	0/2400
esults on Vel	Ri-776 and	l Vehi	cleI	D			
VeRi-776		Top-1(%)		Top-5(%) m.	AP(%)	
KEPLER [16]		48.2		64.3		33.53	
FACT [14]		50.95		73.48	3	18.49	
FACT+Plate-	61.44		78.78	3 2	27.77		
OIFE [23]		68.3		89.7		51.42	
VAMI [32]		77.03		90.82	2 5	50.13	
light vg	76.02		86.05	5	38.94		
light vgg m+SCAN		82.24		90.76	5 4	19.87	
light vgg16		76.82		86.71	1 3	39.91	
light vgg16+SCAN		79.9	2	88.32	2 5	50.15	
Vehi	Top-1		1(%)	Top-:	5(%)		
VGG + Trip	31.		.9	50	.3		
VGG +	32.		2.9	53	.3		
Mixed Diff	38.2		8.2	61.6			
OIFE	67.0		.0) 82			
VAM	47.34		.34	70.	29		
light		44.14		65.21			
light vgg m+SCAN			55.73		71.73		
light vgg16			60.	.63	72.67		
light vgg16+SCAN			63	.52	77.53		
light vgg16+SCAN*			65.	.44	78.	47	

>We proposed an end-to-end trainable framework, namely Spatial Channel Attention Network (SCAN), for joint learning attention weights and feature representation.

>With our SCAN model we could explore discriminative regions and channels for powerful feature extraction without extra annotations. >Our two baseline network are all lightweight CNN architectures. So it's easy to embed our model in mobile devices.

[5] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507 (2017) [23] Wang, Z., et al. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. pp. 379-387 (CVPR2017). [32] Zhou, Y., Shao, L.: Aware attentive multi-view inference for vehicle reidentification. pp. 6489-6498 (CVPR2018).

Model	NP (million)		
VGG M 1024	86.2		
VGG16	127.2		
light vgg m	6.8		
light vgg16	7.9		
SCAN	0.033		

Conclusions

References

Visualisation of our spatial attention

Spatial attention branch locates some spatial regions of vehicles, which approximately corresponds to headlights, taillights, vehicle signs, and vehicle marks.

Comparisons of the number of parameters